SU-E-J-69: Development of an Ambiguity-Free Optical Tracking System for SBRT.
نویسندگان
چکیده
PURPOSE Commercial optical tracking system such as BrainLab ExacTrac© suffers from ambiguous markers which can cause significant delay in patient treatment. We developed an ambiguity-free optical tracking system for high precision SBRT. METHODS The optical tracking system consists of a pair of camera sensors, 4∼8 infra-red (IR) reflective markers affixed on patient skin and in-house developed software. We developed an effective algorithm to automatically eliminate ambiguous markers. A recursive backtracking algorithm was developed to build one-to-one correspondence between reference markers and optical markers. The algorithm was able to deal with missing, misplaced, or occluded markers by introducing 'dummy' markers. Isocenter displacements were calculated in six-degree of freedom through rigid-body registration between reference markers and optical markers. The system accuracy was evaluated with a pelvis phantom against cone beam CT (CBCT) and ExacTrac. The impact of number of markers on tracking accuracy was also evaluated. The performance of automatic ambiguity elimination was assessed with synthetic and clinic marker patterns. RESULTS Difference of isocenter displacement reported by our system and commercial systems (CBCT, ExacTrac) were within 0.5 mm/0.1o. Impact of number of markers on tracking accuracy in our phantom test was negligible with isocenter displacement varying within 0.2 mm/0.2o when number of markers varied from 4 to 8. The system successfully identified and eliminated ambiguous markers in both synthetic and clinic marker patterns. CONCLUSIONS An accurate optical tracking system free of ambiguous markers was developed for patient positioning and monitoring in high precision SBRT. The developed algorithms to eliminate ambiguous markers and to handle missing, misplaced or occluded markers were effective and efficient.
منابع مشابه
Modeling of RF Waves in Free Space Optical Communication System Under Gamma-Gamma Turbulent Channel Effect
In this paper, an enhancement design of communication system using optical radio frequency (RF) waves in free space optical communication (FSO) system is presented. To our knowledge, it is the first time that the effect of Gamma-Gamma turbulent channel model on the performance of the proposed system is analyzed and simulated. To obtain an optical communication system with good performance and h...
متن کاملTime-Varying Frequency Fading Channel Tracking In OFDM-PLNC System, Using Kalman Filter
Physical-layer network coding (PLNC) has the ability to drastically improve the throughput of multi-source wireless communication systems. In this paper, we focus on the problem of channel tracking in a Decode-and-Forward (DF) OFDM PLNC system. We proposed a Kalman Filter-based algorithm for tracking the frequency/time fading channel in this system. Tracking of the channel is performed in the t...
متن کاملProstate-specific antigen kinetics after hypofractionated stereotactic body radiotherapy for localized prostate cancer
Background: stereotactic body radiotherapy (SBRT) has emerged as an effective treatment for localized prostate cancer. However, prostate-specific antigen (PSA) kinetics after SBRT has not been well characterized. The objective of the current study is to analyze the rate of PSA decline and PSA nadir following hypofractonated SBRT in localized prostate cancer. Materials and Methods: From 2008...
متن کاملDevelopment of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction
Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...
متن کاملDevelopment of an Advanced Optical Coherence Tomography System for Radiation Dosimetry
Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 39 6Part7 شماره
صفحات -
تاریخ انتشار 2012